August 1998 Revised December 2000

GTLP6C816A GTLP/LVTTL 1:6 Clock Driver

FAIRCHILD

SEMICONDUCTOR

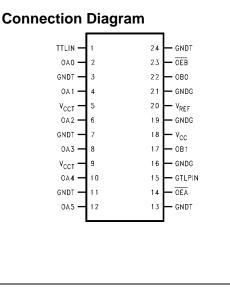
GTLP6C816A GTLP/LVTTL 1:6 Clock Driver

General Description

The GTLP6C816A is a clock driver that provides LVTTL to GTLP signal level translation (and vice versa). The device provides a high speed interface between cards operating at LVTTL logic levels and a backplane operation is a direct result of GTLP's reduced output swing (<1V), reduced input threshold levels and output edge rate control. The edge rate control minimizes bus settling time. GTLP is a Fairchild Semiconductor derivative of the Gunning Transceiver logic (GTL) JEDEC standard JESD8-3.

Fairchild's GTL(P) has internal edge-rate control and is process, voltage, and temperature (PVT) compensated. Its function is similar to BTL and GTL but with different output levels and receiver threshold. GTLP output LOW level is typically less than 0.5V, the output level HIGH is 1.5V and the receiver threshold is 1.0V.

Features

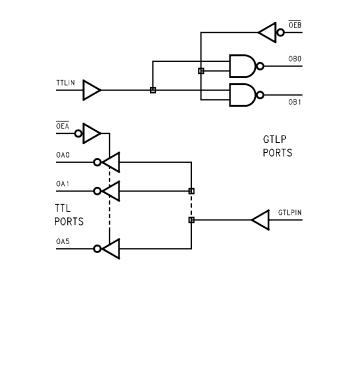

- Interface between LVTTL and GTLP logic levels
- Designed with edge rate control circuitry to reduce output noise on the GTLP port
- V_{REF} pin provides external supply reference voltage for receiver threshold adjustibility
- Special PVT compensation circuitry to provide consistent performance over variations of process, supply voltage and temperature
- TTL compatible driver and control inputs
- Designed using Fairchild advanced BiCMOS technology
 Bushold data inputs on A port to eliminate the need for
 - external pull-up resistors for unused inputs
- Power up/down and power off high impedance for live insertion
- Open drain on GTLP to support wired-or connection
- A Port source/sink -24mA/+24mA
- B Port sink +50mA
- 1:6 fanout clock driver for TTL port
- 1:2 fanout clock driver for GTLP port
- Low voltage version of GTLP6C816

Ordering Code:

Order Number	Package Number	Package Description			
GTLP6C816AMTC	MTC24	24-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 4.4mm Wide			
Device is also available in Tape and Reel. Specify by appending the suffix letter "X" to the ordering code.					

Pin Descriptions

Pin Names	Description
TTLIN, GTLPIN	Clock Inputs (LVTTL and GTLP respectively)
OEB	Output Enable (Active LOW) GTLP Port (LVTTL Levels)
OEA	Output Enable (Active LOW) TTL Port (LVTTL Levels)
V _{CCT} .GNDT	TTL Output Supplies
V _{CC}	Internal Circuitry V _{CC}
GNDG	OBn GTLP Output Grounds
V _{REF}	Voltage Reference Input
OA0–OA5	TTL Buffered Clock Outputs
OB0–OB1	GTLP Buffered Clock Outputs


Functional Description

The GTLP6C816A is a clock driver providing LVTTL-to-GTLP clock translation, and GTLP-to-LVTTL clock translation in the same package. The LVTTL-to-GTLP direction is a 1:2 clock driver path with a single Enable pin (\overline{OEB}). For the GTLP-to-LVTTL direction the clock receiver path is a 1:6 buffer with a single Enable control (\overline{OEA}). Data polarity is inverting for both directions.

Truth Tables

Inpu	its	Outputs
TTLIN	OEB	OBn
Н	L	L
L	L	Н
Х	Н	High Z
Inpu	its	Outputs
Inpu GTLPIN	its OEA	Outputs OAn
· ·		-
GTLPIN		-

Logic Diagram

www.fairchildsemi.com

Absolute Maximum Ratings(Note 1)			Recommended Operating
	Supply Voltage (V _{CC})	-0.5V to +4.6V	Conditions (Note 3)
	DC Input Voltage (V _I)	-0.5V to +4.6V	Supply Voltage V _{CC}
	DC Output Voltage (V _O)		Bus Termination Voltage (V _{TT})
	Outputs 3-STATE	-0.5V to +4.6V	GTLP
	Outputs Active (Note 2)	-0.5V to +4.6V	GTL
	DC Output Sink Current into		V _{REF} (
	OA Port I _{OL}	48 mA	Input Voltage (V _I) on INA-Port
	DC Output Source Current		and Control Pins
	from OA Port I _{OH}	–48 mA	HIGH Level Output Current (I _{OH})
	DC Output Sink Current into		OA Port
	OB Port in the LOW State I _{OL}	100 mA	LOW Level Output Current (I _{OL})
	DC Input Diode Current (IIK)		OA Port
	V ₁ < 0V	–50 mA	OB Port
	DC Output Diode Current (I _{OK})		Operating Temperature (T _A) –
	V _O < 0V	–50 mA	Note 1: Absolute Maximum continuous ratings are tho
	$V_{O} > V_{CC}$	+50 mA	which damage to the device may occur. Exposure to the conditions beyond those indicated may adversely affect
	ESD Rating	> 2000V	Functional operation under absolute maximum rated implied.
	Storage Temperature (T _{STG})	$-65^{\circ}C$ to $+150^{\circ}C$	Note 2: I _o Absolute Maximum Rating must be observed.
	1		5

GTLP6C816A

3.15V to 3.45V

1.47V to 1.53V 1.14V to 1.26V

	0.98V to 1.02V
) on INA-Port	
ns	0.0V to 3.45V
out Current (I _{OH})	
	–24 mA
ut Current (I _{OL})	
	+24 mA
	+50 mA
erature (T _A)	$-40^{\circ}C$ to $+85^{\circ}C$
mum continuous rotings	are these values beyond

ngs are those values beyond posure to these conditions or ersely affect device reliability. num rated conditions is not observed.

Note 3: Unused inputs must be held HIGH or LOW.

DC Electrical Characteristics

Over Recommended Operating Free-Air Temperature Range, V_{REF} = 1.0V (unless otherwise noted).

	Symbol	Test	Conditions	Min	Typ (Note 4)	Max	Units
VIH	GTLPIN			V _{REF} +0.05	. ,	V _{TT}	V
	Others			2.0			V
VIL	GTLPIN			0.0		V _{REF} -0.05	V
	Others					0.8	V
V _{REF} (Note 5)	GTLP				1.0		V
V _{TT} (Note 5)	GTLP				1.5		V
V _{IK}		V _{CC} = 3.15V	I _I = -18 mA			-1.2	V
V _{OH}	OAn Port	V _{CC} = 3.15V	I _{OH} = -100 μA	V _{CC} -0.2			
			I _{OH} = -18 mA	2.4			V
			$I_{OH} = -24 \text{ mA}$	2.2			
V _{OL}	OAn Port	V _{CC} = 3.15V	I _{OL} = 100 μA			0.2	
			I _{OL} = 18 mA			0.4	V
			I _{OL} = 24 mA			0.5	
V _{OL}	OBn Port	V _{CC} = 3.15V	I _{OL} = 100 μA			0.2	
			I _{OL} = 40 mA			0.4	V
			I _{OL} = 50 mA			0.55	
l _l	TTLIN/	V _{CC} = 3.45V	V _I = 3.45V			5	
	Control Pins		$V_I = 0V$			-5	μA
	GTLPIN	V _{CC} = 3.45V	$V_I = V_{TT}$			5	
			$V_1 = 0$			-5	μA
IOFF	TTLIN	$V_{CC} = 0$	V_I or $V_O = 0V$ to 3.45V			30	μA
	GTLPIN	$V_{CC} = 0$	V_I or $V_O = 0V$ to V_{TT}			30	μA
I _{PU/PD}	OAn or OBn Ports	$V_{CC} = 0$ to 1.5V	OE = Don't Care			30	μA
I _{OZH}	OAn-Port	$V_{CC} = 3.45V$	V _O =3.45V			5	
	OBn-Port		V _O = 1.5V			5	μA
I _{OZL}	OAn-Port	$V_{CC} = 3.45V$	V _O = 0			-5	μA
I _{CC}	OAn or	$V_{CC} = 3.45V$	Outputs HIGH		5.5	10	
	OBn Ports		Outputs LOW		5	10	mA
		$V_I = V_{CC}$ or GND	Outputs Disabled		5.5	10	

GTLP6C816A

DC Electrical Characteristics (Continued)

Symbol		Test Conditions		Min	Typ (Note 4)	Max	Units
ΔI_{CC}	TTLIN	$V_{CC} = 3.45V$	$V_{I} = V_{CC} - 0.6$			2	mA
CI	Control Pins/GTLPIN/TTLIN		$V_I = V_{CC} \text{ or } 0$		4.5		
CO	OAn Port		$V_I = V_{CC} \text{ or } 0$		6.0		pF
	OBn Port		$V_I = V_{CC} \text{ or } 0$		8.0		

Note 4: All typical values are at V_{CC} = 3.3V and T_A = 25°C.

Note 5: GTLP V_{REF} and V_{TT} are specified to 2% tolerance since signal integrity and noise margin can be significantly degraded if these supplies are noisy. In addition, V_{TT} and R_{TERM} can be adjusted to accommodate backplane impedances other than 50 Ω , within the boundaries of not exceeding the DC Absolute I_{OL} ratings. Similarly V_{REF} can be adjusted to compensate for changes in V_{TT}.

AC Electrical Characteristics

Over recommended range of supply voltage and operating free air temperature. $V_{REF} = 1.0V$ (unless otherwise noted). C₁ = 30 pF for OBn-Port and C₁ = 50 pF for OAn-Port.

Quarter 1	From To		Min	Тур	Max	11-11-
Symbol	(Input)	(Output)		(Note 6)		Units
f _{TOGGLE}	TTLIN	OBn	175			MHz
	GTLPIN	OAn	175			
t _{PLH}	TTLIN	OBn	1.3	2.3	4.0	
t _{PHL}			0.9	2.6	4.3	ns
t _{PLH}	OEB	OBn	1.5	2.6	4.1	
t _{PHL}			1.2	2.5	4.1	ns
t _{RISE}	Transition Time, OB 0	Dutputs (20% to 80%)		1.3		ns
t _{FALL}	Transition Time, OB	outputs (20% to 80%)		1.3		
t _{RISE}	Transition Time, OA outputs (10% to 90%)			1.2		ns
t _{FALL}	Transition Time, OA outputs (10% to 90%)			2.0		
t _{PZH} , t _{PZL}	OEA	OAn	0.5	2.9	4.8	
t _{PLZ} , t _{PHZ}			0.5	2.4	4.4	ns
t _{PLH}	GTLPIN	OAn	1.9	3.6	5.7	20
t _{PHL}			2.1	3.5	5.3	ns

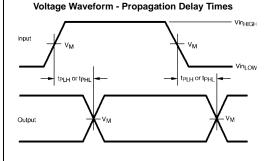
Note 6: All typical values are at V_{CC} = 3.3 V and T_A = 25°C.

Extended Electrical Characteristics

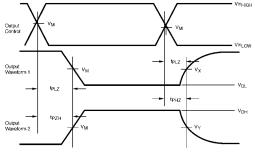
Over recommended ranges of supply voltage and operating free-air temperature V_{REF} = 1.0V (unless otherwise noted). $C_L = 30 \text{ pF}$ for B Port and $C_L = 50 \text{ pF}$ for A Port

Symbol	From (Input)	To (Output)	Min	Typ (Note 7)	Max	Units
	(input)			. ,		
t _{OSLH} (Note 8)	A	В		0.1	0.2	ns
t _{OSHL} (Note 8)	A	В		0.1	0.6	ns
t _{PS} (Note 9)	А	В		0.3	1.0	ns
t _{PV(HL)} (Note 10)(Note 11)	A	В			1.3	ns
t _{OSLH} (Note 8)	В	A		0.1	0.7	20
t _{OSHL} (Note 8)	В	А		0.1	0.4	ns
t _{OST} (Note 8)	В	A		0.2	1.1	ns
t _{PS} (Note 9)	В	A		0.1	1.0	ns
t _{PV} (Note 10)	В	A			2.4	ns

Note 7: All typical values are at $V_{CC} = 3.3$ V and $T_A = 25^{\circ}C$.


Note 8: t_{OSHL}/t_{OSLH} and t_{OST} – Output-to-Output skew is defined as the absolute value of the difference between the actual propagation delay for all outputs within the same packaged device. The specifications are given for specific worst case V_{CC} and temperature and apply to any outputs witching in the same direction dither HIGH-to-LOW (t_{OSHL}) or LOW-to-HIGH (t_{OSLH}) or in opposite directions both HL and LH (t_{OST}). This parameter is guaranteed by design and statistical process distribution. Actual skew values between the GTLP outputs could vary on the backplane due to the loading and impedance seen by the device.

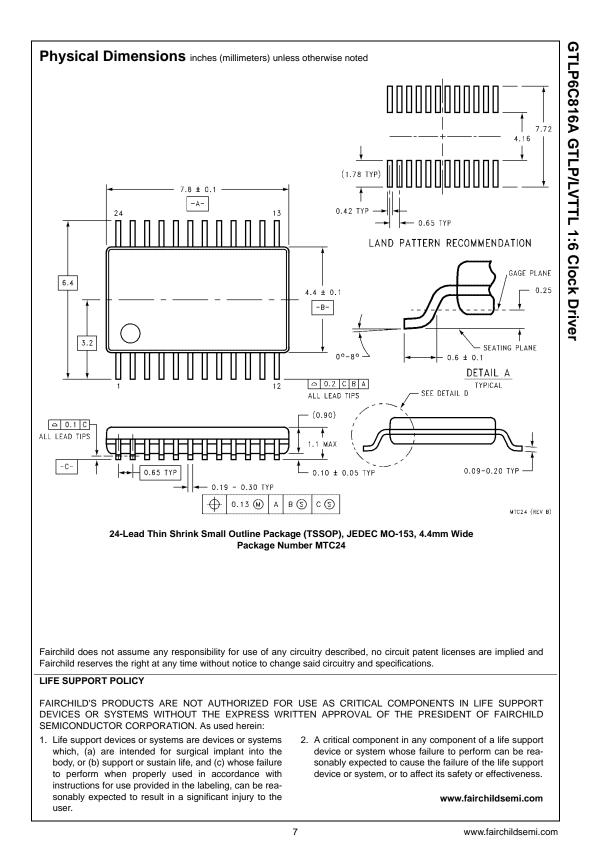
Note 9: t_{PS} – Pin or Transition skew is defined as the difference between the LOW-to-HIGH transition and the HIGH-to-LOW transition on the same pin. The parameter is measured across all the outputs of the same chip is specified for a specific worst case V_{CC} and temperature. This parameter is guaranteed by design and statistical process distribution. Actual skew values between the GTLP outputs could vary on the backplane due to the loading and impedance seen by the device.


Note 10: t_{PV} – Part-to-Part skew is defined as the absolute value of the difference between the actual propagation delay for all outputs from device-to-device. The parameter is specified for a specific worst case V_{CC} and temperature. This parameter is guaranteed by design and statistical process distribution. Actual skew values between the GTLP output could vary on the backplane due to the loading and impedance seen by the device.

Note 11: Due to the open drain structure on GTLP outputs t_{OST} and $t_{PV(LH)}$ in the A-to-B direction are not specified. Skew on these paths is dependent on the V_{TT} and R_T values on the backplane.

GTLP6C816A **Test Circuit and Timing Waveforms** Test Circuit for A Outputs Test Circuit for B Outputs **o** 6V From O Oper 1.5V (GTLP) 1.2V (GTL) 500 Output Under O GND ~~ Ţ $C_L = 50 \text{ pF}$ Test Ş 500 25 (Note A) From Output Under Test s Test 30 pF t_{plh}/t_{phl} 0pen (Notes A, B) t_{plz}/t_{pzl} 6V GND t_{phz}/t_{pzh} Note A: CL includes probes and jig capacitance. Note A: C_L includes probes and jig capacitance. Note B: For B Port $C_L = 30 \text{ pF}$ is used for worst case.

Voltage Waveform - Enable and Disable Times



Output Waveform 1 is for an output with internal conditions such that the output is LOW except when disabled by the control output Output Waveforms 2 is for an output with internal conditions such that the output is HIGH except when disabled by the control output

Input and Measure Conditions

	A or LVTTL Pins	B or GTLP Pins
V _{inHIGH}	3.0	1.5
V _{inLOW}	0.0	0.0
V _M	1.5	1.0
V _X	V _{OL} + 0.3V	N/A
VY	V _{OH} + 0.3V	N/A

All input pulses have the following characteristics: Frequency = 10MHz, $t_{RISE} = t_{FALL} = 2 \text{ ns}$, $Z_O = 50\Omega$. The outputs are measured one at a time with one transition per measurement.

